

Royal Netherlands Meteorological Institute Ministry of Transport, Public Works and Water Management

Feedbacks between climate and human activities in a coupled integrated assessment-climate modeling system with focus on emissions

Clifford Chuwah^{1,2,3}, Twan van Noije¹, Detlef van Vuuren² and Wilco Hazeleger^{1,3}

¹Royal Netherlands Meteorological Institute (KNMI),

²Netherlands Environmental Assessment Agency (PBL),

³Wageningen University and Research Centre (WUR).

Presentation outline

- •Introduction ESM vs IAM
- •Surface ozone concentration and climate impact
- Surface ozone concentration and agriculture
- Questions

Earth system modeling vs Integrated assessment modeling

Atmosphere GCM: IFS Atmosphere GCM: IFS Land: IFS H-tessel Vegetation: LPJ Atmospheric Chemistry and aerosols: TM5 Ocean GCM: NEMO Sea-ice:LIM2/3 Marine ecosystem: PISCES Planned EC-Earth components Planned EC-Earth components

Figure 2.19 IMAGE 2 Integrated Assessment Framework.

Bouwman et al., 2006

Hazeleger et al., 2010

Physical climate (EC-Earth)

Chemistry and aerosols (TM5)

Various meteorological fields

O₃, CH₄ concentrations Aerosol radiative properties

Selection of callolimatic fields
meteodological olimatic fields
(CO2, U.S. (CO2, ...)

Human activities (IMAGE)

Surace O. Nosbosilion
Collusant emissions

Scientific questions

- •Can we by interactive simulation of the nitrogen cycle improve projections of reactive N emissions, and of associated concentrations and climate forcings?
- •Can we by including an additional feedback estimate future impacts of surface ozone on agricultural yields?

Surface ozone concentration

Modelled diurnal (24-h) mean surface ozone concentration averaged over June, July and August (JJA) for the present day (a) and the year 2100 under the SRES A2 emissions scenario (b) - Sitch et al., 2007.

Surface ozone concentration and GPP

Simulated percentage change in gross primary productivity (GPP) between 1901 and 2100 due to ozone effects at fixed pre-industrial atmospheric CO_2 for 'low' (c) and 'high' (d) ozone plant sensitivity - Sitch et al., 2007.

Surface ozone

• Crop yield reduction:

Regionally aggregated relative yield loss RYL for wheat, rice, maize and soybean.

	WORLD	EU25	N.Am	China	India
Wheat					
AOT40	12.3%	4.1%	4.1%	19.0%	27.6%
M7	7.3%	4.6%	4.4%	9.8%	13.2%
Rice					
AOT40	3.7%	4.7%	3.2%	3.9%	8.3%
M7	2.8%	3.5%	2.6%	3.1%	5.7%
Maize					
AOT40	2.4%	3.1%	2.2%	4.7%	2.0%
M12	4.1%	5.1%	3.6%	7.1%	4.0%
Soybean					
AOT40	5.4%	20.5%	7.1%	11.4%	4.7%
M12	15.6%	27.3%	17.7%	20.8%	19.1%

Van Dingenen et al., 2009

Surface ozone concentration

Simulated change in land carbon storage (a). Indirect RF due to ozone increase alone (b), the present day direct RF from STOCHEM-HadGEM1 tropospheric ozone fields (black square) and model mean from IPCC TAR models (black triangle). The bars show estimates from other models – Sitch et al., 2007.

Time for questions

Nitrogen surface exchange(1)

- •Largest increase in NH3 sources is predicted to occur in India and Asia.
- largest source of NH3
 emissions associated with
 livestock husbandry and the
 agricultural use of fertilizers.
- •Emissions related to industry, fossil fuel and bio fuel likely to increase between 2000 and 2030.

Annual mean emission flux [g/m2/yr] for the year 2000 and the difference between the year 2030 and 2000, of NH3 and NO_x (Bauer et al., 2007)

Nitrogen surface exchange (2)

• Emissions (Tg N/yr) - N₂O and NO from mixed intensive agricultural systems; NH₃ from fertilizer and animal manure application and stored manure:

	N ₂ O	NO	NH ₃
1970	2.0	1.1	18
1995	2.7	1.5	34
2030	3.5	2.0	44

• RCP emissions of aerosol precursors and primary aerosols suggest a strong decrease in emissions during the 21st century, except for ammonia.

Bellouin et al., AeroCom 2010

Nitrogen exchange (3)

- Make interactive coupling with TM5 (feedback loop):
 - IMAGE NO and NH₃ emissions
 - TM5 N deposition
- Use either ERA-Interim or EC-Earth (using output fields or one-way coupling) to drive TM5
- Evaluate climate impacts of shorter-lived components offline (a la KRCM)